A New Positive Definite Expanded Mixed Finite Element Method for Parabolic Integrodifferential Equations

نویسندگان

  • Yang Liu
  • Hong Li
  • Jinfeng Wang
  • Wei Gao
چکیده

A new positive definite expanded mixed finite element method is proposed for parabolic partial integrodifferential equations. Compared to expanded mixed scheme, the new expanded mixed element system is symmetric positive definite and both the gradient equation and the flux equation are separated from its scalar unknown equation. The existence and uniqueness for semidiscrete scheme are proved and error estimates are derived for both semidiscrete and fully discrete schemes. Finally, some numerical results are provided to confirm our theoretical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new positive definite semi-discrete mixed finite element solution for parabolic equations

In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations.  Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...

متن کامل

H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations

H1-Galerkin mixed finite element methods are analysed for parabolic partial integrodifferential equations which arise in mathematical models of reactive flows in porous media and of materials with memory effects. Depending on the physical quantities of interest, two methods are discussed. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one sp...

متن کامل

Some New Error Estimates of a Semidiscrete Finite Volume Element Method for Parabolic Integro-differential Equation with Nonsmooth Initial Data

A semidiscrete finite volume element(FVE) approximation to parabolic integrodifferential equation(PIDE) is analyzed in a two-dimensional convex polygonal domain. Optimal order L-error estimates are derived for both smooth and nonsmooth initial data. More precisely, for homogeneous equations, an elementary energy technique and duality argument is used to derive optimal L-error estimate of order ...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Posteriori Error Estimates for a Semidiscrete Parabolic Integrodifferential Control on Multimeshes

We extend the existing techniques to study semidiscrete adaptive finite element approximation schemes for a constrained optimal control problem governed by parabolic integrodifferential equations. The control problem involves time accumulation and the control constrain is given in an integral obstacle sense. We first prove the uniqueness and existence of the solution of this optimal control pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012